Abstract

Activation of neutrophils leading to superoxide production is accompanied by cytoplasmic alkalinization, which results from stimulation of the Na+/H+ exchanger. Since the exchanger undergoes permanent alterations during neutrophilic maturation of HL-60 cells (Costa-Casnellie et al.: Journal of Biological Chemistry 263:11851-11855, 1988), we investigated whether its response to external stimuli such as phorbol esters or osmotic shock also was modified during cell maturation. Mature HL-60 cells produce superoxide in response to active phorbol esters, whereas immature HL-60 cells do not. Stimulation of the exchanger by active phorbol esters (phorbol 12-myristate 13-acetate or phorbol 12,13-dibutyrate) was observed in mature neutrophilic HL-60 cells but not in their immature counterparts. Inactive 4-alpha phorbol had no effect in either cell population. Compound H7 inhibited phorbol ester activation by 65%. In mature neutrophilic cells activation of the exchanger by phorbol esters caused two novel changes of its properties: 1) its apparent Km for Na+ transport increased 2-fold; 2) its Vmax increased 2.6-fold. Phorbol esters also caused a shift in pH dependence of activation similar to that induced in other cells. Osmotic shock, a different method known to activate the exchanger of other cells, induced activation in mature neutrophilic cells but not in immature cells. Thus, the response of the exchanger to external stimuli is affected by alterations occurring in association with cell maturation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.