Abstract

The rostral anterior cingulate cortex (rACC) of rat brain is associated with pain-related emotions. However, the underlying molecular mechanism remains unclear. Here, we investigated the effects of the N-methyl-D-aspartate (NMDA) receptor and Ca2+/Calmodulin-dependent protein kinase type II (CaMKII)α signal on pain-related aversion in the rACC of a rat model of neuropathic pain (NP). Mechanical and thermal hyperalgesia were examined using von Frey and hot plate tests in a rat model of NP induced by spared nerve injury (SNI) of the unilateral sciatic nerve. Bilateral rACC pretreatment with the CaMKII inhibitor tat-CN21 (derived from the cell-penetrating tat sequence and CaM-KIIN amino acids 43–63) or tat-Ctrl (the tat sequence and the scrambled sequence of CN21) was performed on postoperative days 29–35 in Sham rats or rats with SNI. Spatial memory performance was tested using an eight-arm radial maze on postoperative days 34–35. Pain-related negative emotions (aversions) were evaluated using the place escape/avoidance paradigm on postoperative day 35 following the spatial memory performance test. The percentage of time spent in the light area was used to assess pain-related negative emotions (i.e., aversion). The expression levels of the NMDA receptor GluN2B subunit, CaMKIIα, and CaMKII-Threonine at position 286 (Thr286) phosphorylation in contralateral rACC specimens were detected by Western blot or real time PCR following the aversion test. Our data showed that pretreatment of the rACC with tat-CN21 increased determinate behavior but did not alter hyperalgesia or spatial memory performance in rats with SNI. In addition, tat-CN21 reversed the enhanced CaMKII-Thr286 phosphorylation and had no effect on the upregulated expression of GluN2B, CaMKIIα protein, and mRNA. Our data suggested that activation of the NMDA receptor-CaMKIIα signal in rACC is associated with pain-related aversion in rats with NP. These data may provide a new approach for the development of drugs that modulate cognitive and emotional pain aspects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call