Abstract

Ischemia-reperfusion (I/R) is the main cause of acute kidney injury (AKI) in patients. We investigated renal microRNA (miRNA) expression profiles and the time course of changes in selected miRNA expressions after renal I/R to characterize the miRNA network activated during development and recovery from AKI. One day after lethal (30 minutes) and sublethal (20 minutes) renal ischemia, AKI was verified by renal histology (tubular necrosis, regeneration), blood urea nitrogen (BUN) level, renal mRNA expression, and plasma concentration of neutrophil gelatinase-associated lipocalin (NGAL) in C57BL/6J mice. On the first day after 30-minute, lethal I/R miR-21, miR-17-5p, and miR-106a were elevated out of the 21 miRNAs successfully profiled on the Luminex multiplex assay. After 20-minute, sublethal I/R, renal miR-17-5p and miR-106a expressions were elevated on the first and second days of reperfusion, while miR-21 expression increased later and lasted longer. Renal miR-17-5p and miR-21 expressions correlated with each other. Renal function returned to normal on the fourth day after sublethal I/R. Our results demonstrate that besides miR-21, miR-17-5p, and miR-106a are additionally activated during the maintenance and recovery phases of renal I/R injury. Furthermore, a correlation between renal miR-17-5p and miR-21 expressions warrants further investigation of how they may influence each other and the outcome of renal ischemia-reperfusion injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.