Abstract

Endogenous ceramide (CER) was generated by treatment of cultured fibroblasts with sphingomyelinase (SMase) from Bacillus cereus. A 30 min treatment with 0.1–0.3 U/ml SMase induced a dose-dependent increase in the intracellular level of CER. The activation of the transcription factors signal transducer and activator of transcription (STAT) 1 and STAT3 by SMase was investigated by determination of the phosphorylation state by immunoblot, and of DNA binding activity by electrophoretic mobility shift assay. SMase treatment induced a dose-dependent Tyr-phosphorylation of STAT1/3. SMase also enhanced STAT1/3 DNA binding activity in a dose-dependent manner. Concomitantly, SMase enhanced the Tyr-phosphorylation of Janus kinase (JAK) 2, a Tyr-kinase localized upstream of STATs in the JAK/STAT pathway. The Tyr-kinase inhibitor genistein and the JAK inhibitor AG490 both prevented JAK2 Tyr-phosphorylation, together with STAT1 and STAT3 Tyr-phosphorylation and binding activity. The SMase-induced increase in STAT1/3 binding activity was prevented by methyl-β-cyclodextrin, a cholesterol binding agent that causes a loss of compartmentalization of the molecules located in caveolae. This increase was also prevented by the MEK inhibitor PD98059, thus demonstrating the role of the MEK/ERK pathway in this system. Besides ERK, SMase activated other signaling kinases such as JNK and p38. Exogenous natural CER also activated STAT1/3 binding activity, which indicates that most probably, endogenous CER is the second messenger involved in the effect of SMase. These results describe a crosstalk between the SMase/CER and the JAK/STAT signaling pathways and include JAK2 within the range of CER-activated intracellular kinases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.