Abstract

Two of the basic requirements of a good catalyst are that molecules be bound to it with energies intermediate between physisorption and chemisorption and be simultaneously activated in the process. Using density functional theory, we have studied the interaction of small molecules such as H2, O2, N2, CO2, CO, and NH3 with modified dodecaborate anion [B12H12]2-, namely, [B12X11]- and [B12X11]2- (X = H, F, CN). Calculations of the structure, stability, and electronic properties of these species interacting with the above molecules show that they meet the above requirements. In addition, [B12X11]2- (X = F, CN) species are not only more stable than [B12X11]- species but also bind to O2 more strongly than their monoanion counterparts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.