Abstract

Recombinases have several potential advantages as genome editing tools compared to nucleases and other editing enzymes, but the process of engineering them to efficiently recombine predetermined DNA targets demands considerable investment of time and labor. Here we sought to harness zinc-finger DNA-binding domains (ZFDs) to program recombinase binding by developing fusions, in which ZFDs are inserted into recombinase coding sequences. By screening libraries of hybrid proteins, we optimized the insertion site, linker length, spacing and ZFD orientation and generated Cre-type recombinases that remain dormant unless the insertionally fused ZFD binds its target site placed in the vicinity of the recombinase binding site. The developed fusion improved targeted editing efficiencies of recombinases by four-fold and abolished measurable off-target activity in mammalian cells. The ZFD-dependent activity is transferable to a recombinase with relaxed specificity, providing the means for developing fully programmable recombinases. Our engineered recombinases provide improved genome editing tools with increased precision and efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.