Abstract

A novel composite (nZVI/HNTs) was prepared via incorporating nano zero-valent iron (nZVI) on halloysite nanotubes (HNTs) for degrading tetracycline hydrochloride (TCH) with existence of persulfate (PS). The adsorption process of nZVI/HNTs to TCH conformed to the Freundlich isotherm model and pseudo-second-order kinetic model, and its maximum adsorption capacity was 76.62mg·g-1. Furthermore, the nZVI/HNTs + PS system exhibited satisfactory degradation efficiency (84.21%) for TCH, and stable nZVI/HNTs (Fe leaching < 0.001mg·L-1) could be reused. When nZVI/HNTs dosage, PS dosage and temperature increased, TCH degradation could be enhanced. After four cycling, nZVI/HNTs + PS system had still 65.8% degradation for TCH. The quenching tests and EPR analysis evidenced that SO4•- was predominant instead of •OH in such system. Three possible pathways of TCH degradation were provided through the liquid chromatograph-mass spectrometer (LC-MS) determination. Meanwhile, the biological toxicity prediction analysis indicated that the nZVI/HNTs + PS system would be an environment friendly treatment method toward TCH pollution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call