Abstract

A photocatalytic system involving visible light and BiVO4 (Vis/BiVO4) in the presence of peroxymonosulfate (PMS) has been developed to oxidize the target pollutant Rhodamine B (RhB) in aqueous solution. It was found that PMS could enhance the photocatalytic efficiency of BiVO4 and could be activated to promote the removal of RhB with sulfate radicals, hydroxyl radicals and superoxide radicals. Critical impacting factors in the Vis/BiVO4/PMS system were investigated concerning the influence of PMS concentration, solution pH, catalyst dosage, initial concentration of RhB and the presence of anions (Cl− and CO32−). In addition, by using isopropanol, tert-butanol, 1,4-benzoquinone and ethylenediamine tetraacetic acid disodium salt as probe compounds, the main active species were demonstrated including SO4−, OH and O2− in the system, and a detail photocatalytic mechanism for the Vis/BiVO4/PMS system was proposed. Finally, up to 10 intermediate products of RhB were identified by GC/MS, included benzenoid organic compounds, organic acids and three nitrogenous organic compounds. This study provides a feasible way to degrade organic pollutants in wastewater using BiVO4 with PMS under visible light.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call