Abstract

GnRH neurons form the final common pathway for the central control of reproduction. GnRH release occurs from terminals in the external layer of the median eminence (ME) for neuroendocrine control of the pituitary, and near GnRH-GnRH fiber appositions within the preoptic area (POA). Whether or not control of GnRH secretion by neuromodulators is different in these 2 areas is unknown. Mutations in neurokinin B (NKB) or the neurokinin-3 receptor (NK3R) are linked to hypogonadotropic hypogonadism in humans, suggesting that NKB may regulate GnRH secretion. Using fast scan cyclic voltammetry through carbon-fiber microelectrodes, we examined real-time GnRH release in response to the NK3R agonist senktide in the ME and POA. Coronal brain slices were acutely prepared from adult gonad-intact GnRH-green fluorescent protein male mice, and carbon-fiber microelectrodes were placed either within green fluorescent protein-positive terminal fields of the ME or near GnRH-GnRH fiber appositions in the POA. Senktide induced GnRH release consistently in the ME but not the POA, indicating that GnRH release is differentially regulated by NKB in a location-dependent manner. Senktide also induced GnRH secretion in the ME of kisspeptin-knockout (Kiss1 knockout) mice. Interestingly, release amplitude was lower compared with wild-type mice. These data indicate regulation of GnRH release by NK3R agonists is site specific and suggest that kisspeptin is not a required mediator between NK3R activation and GnRH secretion in the ME. This information will be useful for informing future models of afferent regulation of GnRH release.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call