Abstract

BackgroundParkinson’s disease (PD) is an age-related progressive neurodegenerative disorder caused by selective loss of dopaminergic neurons from the substantia nigra (SN) to the striatum. The initial factor that triggers neurodegeneration is unknown; however, inflammation has been demonstrated to be significantly involved in the progression of PD. The present study was designed to investigate the role of the pro-inflammatory cytokine interleukin-1 (IL-1) in the activation of microglia and the decline of motor function using IL-1 knockout (KO) mice.MethodsLipopolysaccharide (LPS) was stereotaxically injected into the SN of mice brains as a single dose or a daily dose for 5 days (5 mg/2 ml/injection, bilaterally). Animal behavior was assessed with the rotarod test at 2 hr and 8, 15 and 22 days after the final LPS injection.ResultsLPS treatment induced the activation of microglia, as demonstrated by production of IL-1β and tumor necrosis factor (TNF) α as well as a change in microglial morphology. The number of cells immunoreactive for 4-hydroxynonenal (4HNE) and nitrotyrosine (NT), which are markers for oxidative insults, increased in the SN, and impairment of motor function was observed after the subacute LPS treatment. Cell death and aggregation of α-synuclein were observed 21 and 30 days after the final LPS injection, respectively. Behavioral deficits were observed in wild-type and TNFα KO mice, but IL-1 KO mice behaved normally. Tyrosine hydroxylase (TH) gene expression was attenuated by LPS treatment in wild-type and TNFα KO mice but not in IL-1 KO mice.ConclusionsThe subacute injection of LPS into the SN induces PD-like pathogenesis and symptoms in mice that mimic the progressive changes of PD including the aggregation of α-synuclein. LPS-induced dysfunction of motor performance was accompanied by the reduced gene expression of TH. These findings suggest that activation of microglia by LPS causes functional changes such as dopaminergic neuron attenuation in an IL-1-dependent manner, resulting in PD-like behavioral impairment.

Highlights

  • Parkinson’s disease (PD) is an age-related progressive neurodegenerative disorder caused by selective loss of dopaminergic neurons from the substantia nigra (SN) to the striatum

  • We demonstrated that subacute administration of LPS (20 μg/2 μL/injection, daily, bilaterally for 5 consecutive days) into the CA1 region of the rat and mouse hippocampus activated the microglia and increased production of IL-1β and tumor necrosis factor α (TNFα), concomitantly resulting in learning and memory deficits in the animals as assessed using a step-through passive avoidance test [5,18]

  • Immunohistochemical analysis revealed no IL-1β immunoreactivity in the substantia nigra pars compact (SNC) from mice treated with phosphate-buffered saline (PBS) (Figure 1A)

Read more

Summary

Introduction

Parkinson’s disease (PD) is an age-related progressive neurodegenerative disorder caused by selective loss of dopaminergic neurons from the substantia nigra (SN) to the striatum. We demonstrated that subacute administration of LPS (20 μg/2 μL/injection, daily, bilaterally for 5 consecutive days) into the CA1 region of the rat and mouse hippocampus activated the microglia and increased production of IL-1β and TNFα, concomitantly resulting in learning and memory deficits in the animals as assessed using a step-through passive avoidance test [5,18]. These results suggest that inflammation affects neuronal function. The results of the present study may lead to a better understanding of the roles of IL-1 in the activation of the microglia and the mechanisms underlying neurodegenerative diseases

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.