Abstract
The insulin receptor is a ligand-activated tyrosine kinase composed of two alpha and two beta subunits. A single transmembrane domain composed of 23 hydrophobic residues is contained in each beta subunit. We examined the role of the transmembrane domain in regulating insulin receptor signaling by inserting a negatively charged amino acid (Asp) for Val938 (V938D). Chinese hamster ovary (CHO) cells were stably transfected with a plasmid containing both the neomycin-resistance gene and either the wild-type or the mutant (V938D) insulin receptor cDNA. Insulin binding increased similarly in CHO cells stably transfected with the wild-type and the V938D-mutant insulin receptor cDNA. Insulin stimulated glucose transport and cell growth in cells expressing the normal insulin receptor. By contrast, in the absence of insulin, glucose transport and cell growth in CHO-V938D cells were as high as in insulin-stimulated control cells and no longer responsive to insulin stimulation. Phosphorylation of the beta subunit of the insulin receptor was also increased in CHO-V938D cells not exposed to insulin. These results support an essential role of the transmembrane domain of the insulin receptor in the transduction of insulin signaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.