Abstract
Recent evidence indicates that activation of glucagon-like peptide-1 (GLP-1) receptors reduces cocaine-mediated behaviors and cocaine-evoked dopamine release in the nucleus accumbens (NAc). However, no studies have examined the role of NAc GLP-1 receptors in the reinstatement of cocaine-seeking behavior, an animal model of relapse. Here, we show that systemic infusion of a behaviorally relevant dose of the GLP-1 receptor agonist exendin-4 penetrated the brain and localized with neurons and astrocytes in the NAc. Administration of exendin-4 directly into the NAc core and shell subregions significantly attenuated cocaine priming-induced reinstatement of drug-seeking behavior. These effects were not due to deficits in operant responding or suppression of locomotor activity as intra-accumbal exendin-4 administration had no effect on sucrose-seeking behavior. To determine the effects of GLP-1 receptor activation on neuronal excitability, exendin-4 was bath applied to ex vivo NAc slices from cocaine-experienced and saline-experienced rats following extinction of cocaine-taking behavior. Exendin-4 increased the frequency of action potential firing of NAc core and shell medium spiny neurons in cocaine-experienced rats while no effect was observed in saline controls. In contrast, exendin-4 did not affect the frequency or amplitude of spontaneous excitatory postsynaptic currents or alter the paired-pulse ratios of evoked excitatory postsynaptic currents. These effects were not associated with altered expression of GLP-1 receptors in the NAc following cocaine self-administration. Taken together, these findings indicate that increased activation of GLP-1 receptors in the NAc during cocaine abstinence increases intrinsic, but not synaptic, excitability of medium spiny neurons and is sufficient to reduce cocaine-seeking behavior.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have