Abstract
Psoralen-conjugated triplex-forming oligonucleotides (pso-TFOs) can target photochemical adducts to specific DNA sequences. Here, we have used pso-TFOs to activate gene expression on a plasmid. We designed a pso-TFO adapter, consisting of a single-stranded TFO for targeting DNA, linked to a double-stranded hairpin segment that contains a hybrid ecdysone response element (E/GRE) enhancer for binding activated ecdysone receptors. When targeted to the 5' flanking region of a minimal promoter, this pso-TFO adapter increased the expression of a downstream reporter gene three- to four-fold. Gene activation, however, was independent of both the E/GRE hairpin of the adapter and ecdysone receptors, suggesting it was due to an intrinsic effect of triplex. Gene activation was dependent on psoralen photo-crosslinking. Gene activation by pso-TFOs in which the psoralen was linked to the TFO via a disulfide bond was similar before and after detachment of the TFO and its release from the triplex. These results indicate that psoralen photo-crosslinks play a prominent role in activation. Gene activation was undiminished in XPA, XPD and XPG human cell lines, indicating that activation was not dependent on the complete nucleotide excision repair (NER) pathway. Collectively, these results demonstrate that TFOs can be used to direct psoralen crosslinks adjacent to a gene as a way of activating gene expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.