Abstract

Reward-predicting cues motivate goal-directed behavior, but in unstable environments humans must also be able to flexibly update cue-reward associations. While the capacity of reward cues to trigger motivation ('reactivity') as well as flexibility in cue-reward associations have been linked to the neurotransmitter dopamine in humans, the specific contribution of the dopamine D1 receptor family to these behaviors remained elusive. To fill this gap, we conducted a randomized, placebo-controlled, double-blind pharmacological study testing the impact of three different doses of a novel D1 agonist (relative to placebo) on reactivity to reward-predicting cues (Pavlovian-to-instrumental transfer) and flexibility of cue-outcome associations (reversal learning). We observed that the impact of the D1 agonist crucially depended on baseline working memory functioning, which has been identified as a proxy for baseline dopamine synthesis capacity. Specifically, increasing D1 receptor stimulation strengthened Pavlovian-to-instrumental transfer in individuals with high baseline working memory capacity. In contrast, higher doses of the D1 agonist improved reversal learning only in individuals with low baseline working memory functioning. Our findings suggest a crucial and baseline-dependent role of D1 receptor activation in controlling both cue reactivity and the flexibility of cue-reward associations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.