Abstract

Survival of chronic lymphocytic leukemia (CLL) cells in vivo is supported by the tissue microenvironment, which includes components of the extracellular matrix. Interactions between tumor cells and the extracellular matrix are in part mediated by CD44, whose principal ligand is hyaluronic acid. Here, we show that CD44 is more highly expressed on CLL cells of the clinically more progressive immunglobulin heavy chain variable gene (IGHV)-unmutated subtype than on cells of the IGHV-mutated type. Engagement of CD44 activated the phosphatidylinositol 3-kinase (PI3K)/AKT and mitogen activated protein kinase (MAPK)/ERK pathways and increased myeloid cell leukemia sequence 1 (MCL-1) protein expression. Consistent with the induction of these anti-apoptotic mechanisms, CD44 protected CLL cells from spontaneous and fludarabine-induced apoptosis. Obatoclax, an antagonist of MCL-1, blocked the pro-survival effect of CD44. In addition, obatoclax synergized with fludarabine to induce apoptosis of CLL cells. In conclusion, components of the extracellular matrix may provide survival signals to CLL cells through engagement of CD44. Inhibition of MCL-1 is a promising strategy to reduce the anti-apoptotic effect of the microenvironment on CLL cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call