Abstract

The accumulation of emerging organic contaminants (EOCs) in waste activated sludge (WAS) is a global concern. In this study, a multi-heteroatom nitrogen and sulfur was successfully embedded into lignin-based biochar (N-S-LGBC) and used it to activate calcium peroxide (CP) for the degradation of 4-nonylphenol (4-NP) in WAS. N-S-LGBC/CP was effective in degrading 85 % of 4-NP within 12 h through the activation of CP owing to hydroxyl radicals and singlet oxygen species generated from the synergism among pyrrolic-N, thiophenic-S, and lattice oxygen, i.e., active sites responsible for 4-NP degradation. These results highlight substrate biodegradability for subsequent bioprocesses that improves WAS treatment in EOC degradation by the N-S-LGBC/CP-mediated process. There was abundance of distinct Aggregatilinea genus within the phylum Chloroflexi during N-S-LGBC/CP treatment, indicating high 4-NP pretreatment efficiency in WAS. This work provides a new understanding of N-S-co-doped carbocatalysts in green and sustainable hydroxyl radical-driven carbon advanced oxidation (HR-CAOP) platforms for WAS remediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call