Abstract
In the slow-channel syndrome (SCS) mutant acetylcholine receptors elicit calcium overload and myonuclear degeneration at the neuromuscular junction (NMJ), without muscle fiber death. Activated caspases are present at SCS motor endplates. We hypothesized that SCS represents a limited form of apoptosis. We found condensed chromatin and occasional single-strand DNA nicks in degenerating synaptic nuclei. Cleaved forms of caspases-3 and -9 were present in mouse SCS muscle homogenates and were specifically localized to NMJs. Finally, interruption of cholinergic activity by axotomy markedly reduced NMJ caspase activity and improved the morphological features of apoptosis at NMJs. These results demonstrate that in SCS processes leading to apoptosis may remain compartmentalized and reversible. Use of cysteine protease inhibitors may aid in treatment of this and other dystrophic muscle and excitotoxic disorders. Identification of extrasynaptic factors that prevent the spread of apoptosis in SCS muscle fibers may aid in developing treatments for neurological disorders characterized by excitotoxicity or apoptosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.