Abstract
Experiments were undertaken using cultured equine sweat gland epithelial cells that express purine receptors belonging to the P2U subclass which allow the selective agonist uridine triphosphate (UTP) to increase the concentration of intracellular free Ca2+ ([Ca2+]i). Experiments using pertussis toxin (Ptx), which inactivates certain guanine-nucleotide-binding proteins (G-proteins), showed that this response consisted of Ptx-sensitive and Ptx-resistant components, and immunochemical analyses of the G-protein alpha subunits present in the cells showed that both Ptx-sensitive (alpha i1-3) and Ptx-resistant (alpha q/11) G-proteins were expressed. P2U receptors may, therefore, normally activate both of these G-protein families. Ptx-sensitive, alpha i2/3 subunits permit inhibitory control of adenylate cyclase, and UTP was shown to cause Ptx-sensitive inhibition of adrenaline-evoked cyclic AMP accumulation, suggesting that the receptors activate Gi2/3. Experiments using cells grown on permeable supports suggested that P2U receptors became essentially confined to the apical membrane in post-confluent cultures. Polarised epithelia may, therefore, express apical P2U receptors which influence two centrally important signal transduction pathways. It is highly improbable that these receptors could be activated by nucleotides released from purinergic nerves, but they may be involved in the autocrine regulation of epithelial function.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have