Abstract

Controlling wastewater pollution from centralized industrial zones is important for reducing overall water pollution. Microbial community structure and diversity can adversely affect wastewater treatment plant (WWTP) performance and stability. Therefore, we studied microbial structure, diversity, and metabolic functions in WWTPs that treat industrial or municipal wastewater. Sludge microbial community diversity and richness were the lowest for the industrial WWTPs, indicating that industrial influents inhibited bacterial growth. The sludge of industrial WWTP had low Nitrospira populations, indicating that influent composition affected nitrification and denitrification. The sludge of industrial WWTPs had high metabolic functions associated with xenobiotic and amino acid metabolism. Furthermore, bacterial richness was positively correlated with conventional pollutants (e.g., carbon, nitrogen, and phosphorus), but negatively correlated with total dissolved solids. This study was expected to provide a more comprehensive understanding of activated sludge microbial communities in full-scale industrial and municipal WWTPs.

Highlights

  • Activated sludge (AS) processes are the most widely used biological processes in wastewater treatment plants (WWTPs) worldwide, and they have been employed for pollutant removal for more than a century, owing to their high nutrient removal, toxin degradation, and biomass retention capabilities [1,2,3]

  • Reductions in common chemical oxygen demand (CODcr), ammonia–nitrogen (NH4 -N), total nitrogen (TN), and total phosphorus (TP), via wastewater treatment in industrial zones located in the Haihe Water Basin, China, contributed to 26.2%, 23.9%, 20.3%, and 29.0%, respectively, of the total pollutant reduction achieved through municipal and industrial wastewater treatment in China [7]

  • The removal efficiencies for the conventional pollutants detected in the influent were lower than that of Y-WWTP

Read more

Summary

Introduction

Activated sludge (AS) processes are the most widely used biological processes in wastewater treatment plants (WWTPs) worldwide, and they have been employed for pollutant removal for more than a century, owing to their high nutrient removal, toxin degradation, and biomass retention capabilities [1,2,3]. Reductions in common chemical oxygen demand (CODcr), ammonia–nitrogen (NH4 -N), total nitrogen (TN), and total phosphorus (TP), via wastewater treatment in industrial zones located in the Haihe Water Basin, China, contributed to 26.2%, 23.9%, 20.3%, and 29.0%, respectively, of the total pollutant reduction achieved through municipal and industrial wastewater treatment in China [7]. This implies that treatment of wastewater generated by China’s industrial zones will facilitate water pollution control in China [8]. Factories sometimes discharge their wastewater without any effective pretreatment into centralized WWTPs of industrial zones

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call