Abstract
BackgroundThe calcific aortic valve (AV) disease is a common disease with the unclear mechanism, and optimal pharmacological treatment remains unavailable. Epigenetic modulation by histone acetyltransferase (HAT) plays a critical role in osteogenic transdifferentiation and atherosclerosis. The purposes of this study were to investigate whether HAT contributes to the pathophysiology of AV calcification and assess the therapeutic potential of HAT inhibition. MethodsPorcine valvular interstitial cells (VICs) were treated with osteogenic medium (10ng/mL of tumor necrosis factor-α and 4mmol/L of high phosphate) for 7days. We analyzed the RNA and protein expression of myofibroblastic (α-SMA, vimentin, collagen 1A1, collagen 3, Egr-1, MMP2, MMP9) and osteoblastic markers (osteocalcin and alkaline phosphatase) in VICs, and studied the effects of a p300 inhibitor (C646, 10μmol/L) on calcification (Alizarin Red S staining), osteogenesis, HAT activity, the mitogen-activated protein kinase (MAPK) and Akt pathway, and Klotho expression on VICs. ResultsOsteogenic medium treated VICs had higher expressions of osteocalcin, alkaline phosphatase and acetylated lysine-9 of histone H3 (ac-H3K9) than control cells. C646 attenuated osteogenesis of VICs with simultaneous inhibition of the HAT activity of p300. There was neither significant increase of p300 protein nor p300 transcript during the osteogenesis process. Additionally, osteogenic medium treated VICs decreased the expression of Klotho, which is attenuated by C646. ConclusionsActivated HAT activity of p300 modulates AV calcification through osteogenic transdifferentiation of VICs with Klotho modulation. P300 inhibition is a potential therapeutic target for AV calcification.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have