Abstract

DNA from five lines of transformed bladder epithelial cells derived from cultures of primary cells that had been treated with 7,12-dimethylbenz[a]anthracene (DMBA) can transform NIH 3T3 mouse fibroblasts in DNA transfection experiments. Southern analysis of DNA from NIH 3T3 primary and secondary transformants established that four of the DMBA-transformed cell lines contained activated cellular Ki-ras, while the remaining cell line contained a transforming gene that is unrelated to Ki-ras, N-ras, and Ha-ras. The point mutations responsible for Ki-ras activation were detected using oligonucleotide probes following selective amplification of Ki-ras specific sequences using the polymerase chain reaction. The results showed that activation of Ki-ras invariably involved a GC----AT transition mutation of the first position of codon 12. Surprisingly, a Ki-ras gene that was activated by a GC----AT transition mutation at the same position was also detected in a single transformed bladder urothelial cell line derived from control cultures of mouse bladder cells. Together, our results indicate that Ki-ras activation in the DMBA-transformed bladder cell lines may not be a direct consequence of interaction of activated DMBA metabolites with the Ki-ras gene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.