Abstract

Activated carbon doping TiO2 nanoparticles were synthesised by zapota leaf extract using the co-precipitation method. The bio-constituents of plant compounds were used in the reactions of stabilization and reductions. The carbon loading on the TiO2 nanoparticles was characterised by XRD, FTIR, UV-DRS, SEM with EDX, and TEM analysis. The loading of activated carbon onto the TiO2 nanoparticles decreased the crystallite size and optical bandgap, and their doping improved the surface structure of AC/TiO2 nanoparticles. Mesoporous/microporous instability was remodified from the activated carbon, which was visualised using SEM and TEM analysis, respectively. The photocatalytic dye degradation of Rh-B dye was degraded in TiO2 and AC/TiO2 nanoparticles under visible light irradiation. The degradation efficiencies of TiO2 and AC/TiO2 nanoparticles were 73% and 91%, respectively. The bacterial abilities of TiO2 and AC/TiO2 nanoparticles were examined by E. coli and S. aureus. The water reclamation efficiency and bactericidal effect of TiO2 and AC/TiO2 nanoparticles were examined via catalytic dye degradation and bacterial efficiency of activated carbon-doped titanium dioxide nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.