Abstract

AbstractThe two main results in this paper concern the regularity of the invariant foliation of a $C^0$ -integrable symplectic twist diffeomorphism of the two-dimensional annulus, namely that (i) the generating function of such a foliation is $C^1$ , and (ii) the foliation is Hölder with exponent $\tfrac 12$ . We also characterize foliations by graphs that are straightenable via a symplectic homeomorphism and prove that every symplectic homeomorphism that leaves invariant all the leaves of a straightenable foliation has Arnol’d–Liouville coordinates, in which the dynamics restricted to the leaves is conjugate to a rotation. We deduce that every Lipschitz integrable symplectic twist diffeomorphisms of the two-dimensional annulus has Arnol’d–Liouville coordinates and then provide examples of ‘strange’ Lipschitz foliations by smooth curves that cannot be straightened by a symplectic homeomorphism and cannot be invariant by a symplectic twist diffeomorphism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.