Abstract

We give sharp regularity results for the invariant subbundles of hyperbolic dynamical systems in terms of contraction and expansion rates and prove optimality in a strong sense: we construct open dense sets of codimension one systems where this regularity is not exceeded. Furthermore, we exhibit open dense sets of symplectic, geodesic, and codimension one systems where the analogous regularity results of [PSW] are optimal. As our main result we produce open sets of symplectic Anosov diffeomorphisms and flows with low transverse Hölder regularity of the invariant foliations almost everywhere. Prevalence of low regularity of conjugacies is a corollary. We also establish a new connection between the transverse regularity of foliations and their tangent subbundles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.