Abstract

Using single rat adrenal chromaffin cells, we examined the coupling of action potential activity to quantal release of catecholamines by combining perforated patch current-clamp recording with electrochemical microcarbon fiber amperometry. Chromaffin cells display steeper dependence of quantal release on action potential frequency than many nerve terminals, as well as more desynchronized release following an action potential. Also in contrast to neurons, in chromaffin cells, a major chemical secretagogue (acetylcholine) triggers potent quantal release even in the absence of electrical activity. These findings are consistent with an hypothesis that a major component of exocytosis from chromaffin cells involves diffusion of Ca2+ to secretion sites which are less well co-localized with Ca2+ channels than those in nerve terminals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.