Abstract

Nature is the major reservoir of biologically active molecules. The urgent need of finding novel molecules for pharmaceutical application is prompting the research of underexplored environments, such as marine ecosystems. Here, we investigated cultivable actinobacteria associated with the macroalgae Laminaria ochroleuca and assessed their potential to produce compounds with antimicrobial or anticancer activities. A specimen of L. ochroleuca was collected in a rocky shore in northern Portugal, and fragments of tissues from different parts of the macroalgae (holdfast, stipe, and blades) were surface sterilized and plated in three culture media selective for actinobacteria. A total of 90 actinobacterial strains were isolated, most of which affiliated with the genus Streptomyces. Isolates associated with the genera Isoptericola, Rhodococcus, Nonomuraeae, Nocardiopsis, Microbispora, and Microbacterium were also obtained. Organic extracts from the isolates were tested for their antimicrobial activity using the agar-based disk diffusion method, followed by determination of minimum inhibitory concentration (MIC) values. Forty-five isolates inhibited the growth of Candida albicans and/or Staphylococcus aureus, with MIC values ranging from <0.5 to 1000 μg mL−1. The actinobacterial isolates were also tested for their anticancer potential on two human cancer cell lines. Twenty-eight extracts affected the viability of at least one human cancer cell line (breast carcinoma T-47D and neuroblastoma SH-SY5Y) and non-carcinogenic endothelial cell line (hCMEC/D3). Seven extracts affected the viability of cancer cells only. This study revealed that L. ochroleuca is a rich source of actinobacteria with promising antimicrobial and anticancer activities and suggests that macroalgae may be a valuable source of actinobacteria and, consequently, of new molecules with biotechnological importance.

Highlights

  • Natural products (NP) play an important role in several sectors of our society

  • A total of 90 actinobacterial strains were isolated from sterilized tissue fragments obtained from the holdfast, stipe, and blades of L. ochroleuca (Figure 1A)

  • Streptomyces, Isoptericola, Rhodococcus, Nonomuraeae, Nocardiopsis, and Microbacterium strains were isolated from the holdfast, Microbispora and Microbacterium strains from the stipe, and Streptomyces and Microbacterium strains from the blades (Figures 1A,B, 3)

Read more

Summary

Introduction

Natural products (NP) play an important role in several sectors of our society These compounds are valuable from industrial, biotechnological and pharmacological perspectives. More than 10,000 different bioactive molecules have been reported from actinobacteria, representing nearly 45% of the bioactive microbial metabolites currently known, the majority of which having been isolated from the genus Streptomyces (Berdy, 2005; Azman et al, 2017). For this reason, in the last decades, multiple NP discovery efforts have focused on actinobacteria, especially those from terrestrial sources. Two notable illustrations of the potential of marine actinobacteria to produce novel lead drugs are salinosporamide A, produced by the marine actinobacteria Salinospora tropica, in clinical trials to treat patients with multiple myeloma, solid tumors, and lymphoma (Pérez and Fenical, 2017), and abyssomicin C, isolated from a marine Verrucosispora, exhibiting antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Mycobacterium tuberculosis (Bister et al, 2004; Freundlich et al, 2010)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.