Abstract
Herndon proposed a nuclear fission reactor at the center of the Earth to explain changes in the geomagnetic field and the 3He/4He ratios observed from deep mantle sources. This study investigated the neutronic properties of the planetary-scale reactor by performing rigorous depletion simulations over geologic time by using a modified TRITON sequence in SCALE6. We also conducted analytical calculations of the rates of change of various actinides in the reactor core to identify the primary mechanisms involved in the nuclear system as a function of the operating time. The sound agreement between analytical and TRITON calculations on the predicted variations of the amounts of important actinides revealed that (1) the hypothetical nuclear georeactor is a fast-spectrum converter reactor burning only 235U; (2) the efficiency of fuel conversion approaches 0.9, and can be sustained for billions of years based on the cycle of 238U/239Pu/235U, rather than of 238U/239Pu or 232Th/233U; and (3) under appropriate conditions, the georeactor can operate at a constant power of 3TW for up to 6.5billionyears.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.