Abstract

Directional migration of border cells in the Drosophila egg chambers is a developmentally regulated event that requires dynamic cellular functions. In this study, the electron microscopic observation of migrating border cells revealed loose actin bundles in forepart lamellipodia and numerous microvilli extending from nurse cells and providing multiple adhesive contacts with border cells. To analyze the dynamics of actin in migrating border cells in vivo, we constructed a green fluorescent protein-actin fusion protein and induced its expression in Drosophila using the GAL4/UAS system. The green fluorescent protein-actin was incorporated into the actin bundles and it enabled visualization of the rapid cytoskeletal changes in border cell lamellipodia. During the growth of the lamellipodia, the actin bundles that increased in number and size radiated from the bundle-organizing center. Quantification of the fluorescence intensity showed that an accumulation of bundle-associated and spotted green fluorescent protein-actin signals took place during their centripetal movement. Our results favored a treadmilling model for actin behavior in border cell lamellipodia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.