Abstract

Acrylonitrile (ACN) is widely used as a monomer in the polymer industry. Studies on carcinogenicity in rats exposed to ACN showed increased incidences of tumors including glial cell tumors of central nervous system and increased production of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) in glial cells. Using a high performance liquid chromatograph equipped with an electrochemical detector, we revealed that ACN enhanced the formation of 8-oxo-dG induced by H2O2 and Cu(II) whereas ACN itself did not cause DNA damage. The enhancing effect of ACN was much more efficient in the double-stranded DNA than that in the single-stranded DNA. Experiments with 32P-labeled DNA revealed that addition of ACN enhanced the site-specific DNA damage at guanines, particularly at 5'-site of the GG and GGG sequences while H2O2/Cu(II) induced piperidine-labile sites at thymine, cytosine, and guanine residues. An electron spin resonance spectroscopy using alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone showed that a nitrogen-centered radical was generated from ACN in the presence of H2O2 and Cu(II). It is considered that ACN enhances H2O2-mediated DNA damage via nitrogen-centered radical formation. We will discuss the mechanism of the enhancing effect on oxidative DNA damage in relation to expression of ACN carcinogenicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.