Abstract

Methotrexate (MTX), an antineoplastic agent, demonstrates phototoxicity. The mechanism of damage to biomacromolecules induced by photoirradiated MTX was examined using 32P-labeled DNA fragments obtained from a human gene. Photoirradiated MTX caused DNA cleavage specifically at the underlined G in 5'-GG and 5'-GGG sequences in double-stranded DNA only when the DNA fragments were treated with piperidine, which suggests that DNA cleavage was caused by base modification with little or no strand breakage. With denatured single-stranded DNA the damage occurred at most guanine residues. The amount of formation of 8-hydroxy-2'-deoxyguanosine (8-oxodGuo), an oxidative product of 2'-deoxyguanosine, in double-stranded DNA exceeded that in single-stranded DNA. These results suggest that photoirradiated MTX participates in 8-oxodGuo formation at the underlined G in 5'-GG and 5'-GGG sequences in double-stranded DNA through electron transfer, and then 8-oxodGuo undergoes further oxidation into piperidine-labile products. Fluorescence measurement, high-pressure liquid chromatography and mass spectrometry have demonstrated that photoexcited MTX is hydrolyzed into 2,4-diamino-6-(hydroxymethyl)pteridine (DHP). DNA damage induced by DHP was observed in a similar manner as was the damage induced by MTX. The extent of DNA damage and the formation of 8-oxodGuo by DHP were much larger than those induced by MTX. The kinetic analysis, based on the time course of DNA oxidation by photoirradiated MTX, suggests that DNA damage is caused by photoexcited DHP rather than by photoexcited MTX. In conclusion, photoexcited MTX undergoes hydrolysis through intramolecular electron transfer, resulting in the formation of DHP, which exhibits a phototoxic effect caused by oxidation of biomacromolecules through photoinduced electron transfer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.