Abstract
Abstract This study demonstrates the feasibility of printing 3D composite objects based on acrylic photocurable formulations, containing in situ generated silver nanoparticles (AgNPs). In fact, the laser radiation of a commercial stereolithography printer was used to both selectively cure, layer by layer, the acrylic resin and to reduce a silver salt to AgNPs (having dimensions ranging between 10 and 25 nm). The most suitable formulation was developed using silver acetate to obtain 1% by weight of AgNPs in the final 3D structures. The presence of the filler causes an increase in the physical and mechanical properties of the samples that become significantly stiffer and stronger than the pristine matrix. Antibacterial properties and electrical conductivity measurements performed on the printed samples gave promising results for the use of the developed formulation for the building of 3D polymeric structures with improved multifunctional properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.