Abstract
We investigated the time-dependent acrylamide formation in mung bean sprouts during stir-frying under high and medium heat conditions. The acrylamide concentration range detected using the 3-mercaptobenzoic acid derivatization LC-MS/MS method was from below 29 ng/g [limit of detection (LOD)] to 6,900 ng/g. We also investigated the acrylamide levels in mung bean sprouts cooked using four methods while retaining their fresh firm texture using the thiosalicyclic acid derivatization LC-MS/MS method. The acrylamide concentration in microwave oven-cooked sprouts was below 16 ng/g (LOD). The samples cooked by stir-frying, parching, or boiling contained an acrylamide concentration above the LOD but below 42 ng/g [limit of quantification (LOQ)], except for one replicate of a stir-fried sample, whose acrylamide concentration was 42 ng/g. Bean sprouts are popular affordable vegetables, and when stir-fried, their acrylamide concentration is assumed to strongly affect the exposure of the Japanese population to acrylamide. Because the acrylamide concentration range of fried bean sprouts is as broad as mentioned above, the selection of a representative concentration value is difficult. A precise survey and data about acrylamide formation in relation to the bean sprout components before heating, their changes occurring during storage, and the cooking methods and conditions used are needed to estimate the exposure of the Japanese to acrylamide. Here, we showed that rinsing the sprouts before frying and frying them for a short time while mixing them well, while retaining the fresh firm texture to avoid burning and shriveling the sprouts is effective in decreasing the amount of acrylamide formed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.