Abstract
Acrylamide exposure from daily-consumed food has raised global concern. We aimed to assess the exposure-response relationships of internal acrylamide exposure with oxidative DNA damage, lipid peroxidation, and fasting plasma glucose (FPG) alteration and investigate the mediating role of oxidative DNA damage and lipid peroxidation in the association of internal acrylamide exposure with FPG. FPG and urinary biomarkers of oxidative DNA damage (8-hydroxy-deoxyguanosine [8-OHdG]), lipid peroxidation (8-iso-prostaglandin-F2α [8-iso-PGF2α]), and acrylamide exposure (N-acetyl-S-[2-carbamoylethyl]-l-cysteine [AAMA], N-acetyl-S-[2-carbamoyl-2-hydroxyethyl]-l-cysteine [GAMA]) were measured for 3,270 general adults from the Wuhan-Zhuhai cohort. The associations of urinary acrylamide metabolites with 8-OHdG, 8-iso-PGF2α, and FPG were assessed by linear mixed models. The mediating roles of 8-OHdG and 8-iso-PGF2α were evaluated by mediation analysis. We found significant linear positive dose-response relationships of urinary acrylamide metabolites with 8-OHdG, 8-iso-PGF2α, and FPG (except GAMA with FPG) and 8-iso-PGF2α with FPG. Each 1-unit increase in log-transformed level of AAMA, AAMA + GAMA (ΣUAAM), or 8-iso-PGF2α was associated with a 0.17, 0.15, or 0.23 mmol/L increase in FPG, respectively (P and/or P trend < 0.05). Each 1% increase in AAMA, GAMA, or ΣUAAM was associated with a 0.19%, 0.27%, or 0.22% increase in 8-OHdG, respectively, and a 0.40%, 0.48%, or 0.44% increase in 8-iso-PGF2α, respectively (P and P trend < 0.05). Increased 8-iso-PGF2α rather than 8-OHdG significantly mediated 64.29% and 76.92% of the AAMA- and ΣUAAM-associated FPG increases, respectively. Exposure of the general adult population to acrylamide was associated with FPG elevation, oxidative DNA damage, and lipid peroxidation, which in turn partly mediated acrylamide-associated FPG elevation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have