Abstract
Abstract Objectives Cancer cells modulate metabolic pathways to ensure continuity of energy, macromolecules and redox- homeostasis. Although these vulnerabilities are often targeted individually, targeting all with an enzyme may prove a novel approach. However, therapeutic enzymes are prone to proteolytic degradation and neutralizing antibodies leading to a reduced half-life and effectiveness. We hypothesized that glucose oxidase (GOX) enzyme that catalyzes oxidation of glucose and production of hydrogen peroxide, may hit all these targets by depleting glucose; crippling anabolic pathways and producing reactive oxygen species (ROS); unbalancing redox homeostasis. Methods We encapsulated GOX in an acrylamide layer and then performed activity assays in denaturizing settings to determine protection provided by encapsulation. Afterwards, we tested the effects of encapsulated (enGOX) and free (fGOX) enzyme on MCF-7 breast cancer cells. Results GOX preserved 70% of its activity following encapsulation. When fGOX and enGOX treated with guanidinium chloride, fGOX lost approximately 72% of its activity, while enGOX only lost 30%. Both forms demonstrated remarkable resilience against degradation by proteinase K and inhibited viability of MCF-7 cells in an activity-dependent manner. Conclusions Encapsulation provided protection to GOX against denaturation without reducing its activity, which would prolong half-life of the enzyme when administered intravenously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.