Abstract

BackgroundGinsenoside-Rg2 (G-Rg2) is a protopanaxatriol-type ginsenoside isolated from ginseng. It has been found to exhibit various pharmacological effects, including antioxidant, anti-inflammatory, and anticancer effects. PurposeThis study aimed to investigate the anticancer effects of G-Rg2 on estrogen receptor-positive MCF-7 breast cancer (BC) cells, and the underlying mechanisms involving in reactive oxygen species (ROS) production. Study design/MethodsCell viability, cell cycle distribution, apoptosis, and ROS production were measured following exposure to G-Rg2. The protein expression levels of p-ERK1/2, p-Akt, PARP, p-Rb, cyclin D1, CDK6, and p-AMPK were quantified using western blot analysis. The in vivo activity of G-Rg2 was assessed in a xenograft model. Immunohistochemistry staining for p-Rb and p-AMPK was performed in tumor tissues. ResultsG-Rg2 significantly decreased cell viability but increased cell apoptosis. In MCF-7 cells, G-Rg2 increased ROS production by inhibiting ERK1/2 and Akt activation. G-Rg2-induced ROS induced G0/G1 cell cycle arrest and AMPK phosphorylation. In the xenograft model, the 5 mg/kg G-Rg2-treated group showed decreased tumor volume and weight, similar to the 5 mg/kg 4-OHT-treated group, compared to the control group. Immunohistochemistry staining showed that G-Rg2 treatment decreased Rb phosphorylation, while increasing AMPK phosphorylation in tumor tissues. ConclusionG-Rg2 has potential anticancer effects by increasing the ROS-AMPK signaling pathway and inhibiting ERK1/2 and Akt activation-mediated cell proliferation and cell cycle progression in MCF-7 BC cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call