Abstract
Ensemble classification methods that independently construct component models (e.g., bagging) improve accuracy over single models by reducing the error due to variance. Some work has been done to extend ensemble techniques for classification in relational domains by taking relational data characteristics or multiple link types into account during model construction. However, since these approaches follow the conventional approach to ensemble learning, they improve performance by reducing the error due to variance in learning. We note however, that variance in inference can be an additional source of error in relational methods that use collective classification, since inferred values are propagated during inference. We propose a novel ensemble mechanism for collective classification that reduces both learning and inference variance, by incorporating prediction averaging into the collective inference process itself. We show that our proposed method significantly outperforms a straightforward relational ensemble baseline on both synthetic and real-world datasets.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.