Abstract
Collective classification approaches exploit the dependencies of a group of linked objects whose class labels are correlated and need to be predicted simultaneously. In this paper, we focus on studying the collective classification problem in heterogeneous networks, which involves multiple types of data objects interconnected by multiple types of links. Intuitively, two objects are correlated if they are linked by many paths in the network. By considering different linkage paths in the network, one can capture the subtlety of different types of dependencies among objects. We introduce the concept of meta-path based dependencies among objects, where a meta path is a path consisting a certain sequence of linke types. We show that the quality of collective classification results strongly depends upon the meta paths used. To accommodate the large network size, a novel solution, called HCC (meta-path based Heterogenous Collective Classification), is developed to effectively assign labels to a group of instances that are interconnected through different meta-paths. The proposed HCC model can capture different types of dependencies among objects with respect to different meta paths. Empirical studies on real-world networks demonstrate that effectiveness of the proposed meta path-based collective classification approach.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.