Abstract

Novel therapeutic alternatives for cancer treatment are increasingly attracting global research attention. Although chemotherapy remains a primary clinical solution, it often results in significant side effects for patients. In recent years, anticancer peptides (ACPs) have emerged as promising candidates for highly specific anticancer drugs, and a number of computational approaches have been developed to identify ACPs. However, existing methods do not recognize specific types of anticancer function. In this article, we propose ACPScanner, an integrated approach to predict ACPs and non-ACPs at first and then predict several specific activity types for potential ACPs. We incorporate sequential, physicochemical properties, secondary structural information, and deep representation learning embeddings which are generated from artificial intelligence methods to build feature space. Customized deep learning and statistical learning methods are combined to form an integral architecture for the comprehensive two-level prediction task. To the best of our knowledge, ACPScanner is the first approach for specific ACP activity prediction. The comparative evaluation illustrates that ACPScanner achieves competitive prediction performance in both prediction phases in independent testings. We establish a web server at http://acpscanner.denglab.org to provide convenient usage of ACPScanner and make the predictive framework, source code, and data sets publicly available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call