Abstract
An acousto-optic (AO)-based electric field sensor is presented for time domain measurement under magnetic resonance imaging (MRI). A fully MR-compatible sensor is designed and fabricated using a phase-shifted fiber Bragg grating mechanically coupled to a piezoelectric transducer. Mechanical resonance of the piezoelectric transducer is matched to the operating frequencies of commonly used MRI systems to increase the sensitivity of the sensor. Sensitivity of the sensor is measured as 1.27 mV/V/m, with a minimum detectable electric field of 4.4 mV/m/√/Hz. Directivity of the sensor is measured with a 18 dB orthogonal component rejection. The dynamic range of the sensor is calculated as 117 dB/Hz, which allows the measurement of electric fields up to 3.2 kV/m. In MRI studies, the AO sensor was able detect local hot spots around a reference implant accurately with high signal-to-noise ratio. AO sensor exhibited similar or better performance when compared with commercially available MRI compatible electric field sensors. Furthermore, the small size of the sensor with the flexible fiber optic link could allow in situ measurements of electric fields during critical interventional procedures such as pacemaker lead or deep brain stimulator placement as an MRI dosimeter during diagnostic scans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.