Abstract

• This review addresses the current developments and remaining challenges of advanced acoustofluidic techniques in bioengineering fields. • The fundamentals of acoustic manipulation and typical acoustofluidic devices are introduced. • This review provides an overall survey on the applications of cell and tissue engineering using acoustofluidic devices, such as 2D cell patterning for studying cell-cell interactions, and 3D tissue engineering for replicating multicellular developments. • This review presents an in-depth insight into the current difficulties and future prospects of acoustofluidics for future applications. Acoustofluidics has been a promising approach using sound waves to manipulate particles and actuate fluids in biomedical applications. It usually generates acoustic radiation force and acoustic streaming to initiate diffraction, reflection and interference, building up a pressure distribution to facilitate accurate manipulation of micro- or nano-scale particles and fluids. Owing to its remarkable contact-free and biocompatible advantages, acoustofluidics has been used in high-throughput cell analysis, size-controllable organoid structures, and functional tissue mimics. We enumerate the basic concepts and the sufficient research of acoustofluidics in precise patterning and tissue engineering in this review, including the design and function of four typical acoustofluidic devices, various forms of cell patterning and 3D tissue engineering. Meanwhile, we outlined current challenges and future directions of acoustofluidics in biomedicine and tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.