Abstract
The acoustoelectric (AE) effect is that ultrasonic wave causes the conductivity of electrolyte to change in local position. AE imaging is an imaging method that utilizes AE effect. The decoding accuracy of AE signal is of great significance to improve the decoded signal quality and resolution of AE imaging. At present, the envelope function is adopted to decode AE signal, but the timing characteristics of the decoded signal and the source signal are not very consistent. In order to further improve the decoding accuracy, based on envelope decoding, the decoding process of AE signal is investigated. Considering with the periodic property of AE signal in time series, the upper envelope signal is further fitted by Fourier approximation. Phantom experiment validates the feasibility of AE signal decoding by Fourier approximation. And the time sequence diagram decoded with envelope is also compared. The fitted curve can represent the overall trend curve of low-frequency current signal, which has a significant correspondence with the current source signal. The main performance is of the same frequency and phase. Experiment results validate that the proposed decoding algorithm can improve the decoding accuracy of AE signal and be of potential for the clinical application of AE imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.