Abstract

The acoustoelectric admittance Y of the ZX-cut periodically poled LiNbO3 plate is investigated experimentally and theoretically computed. The sample consists of 88 inversely poled domains of 0.45 mm-long each. The vector voltmeter, digital oscilloscope, and function generator were used to measure the frequency dependencies Y(F) at room temperature. Double peaks were observed in the admittance measurements near the lower edge of a stop-band at frequencies 3.268 MHz and 3.287 MHz. Another double peak exists near upper edge of the acoustic stop band at frequencies 3.651 MHz and 3.663 MHz. The double peak in Y can be explained as follows. Ultrasound in this ferroelectric acoustic metamaterial (FAM) has a so-called stop band when an acoustic wavelength is close to a double-length of ferroelectric domain within the inversely poled structure. The dispersion curves computed by the finite element method reveal an effect of decoupling of two acoustic displacements in a zero-antisymmetric mode. The two displacements Ax and Az along the X and Z axes become decoupled near the boundaries of the acoustic Brillouin zone. This can be explained by different diffraction losses in two orthogonal displacements within the FAM. Computations are in a good agreement with experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.