Abstract

Acoustoelastic effect describes the change of ultrasound velocity due to the initial stress. Its simulation involves a numerical analysis of nonlinear elastodynamics and requires high accuracy in the time domain. A time–space finite element formulation, derived from the quadratic interpolation of the acceleration within a time segment, is proposed for an accurate simulation of the acoustoelastic effect in the present study. Ten different integration schemes are generated based on this formulation and nine of them are found to be conditionally stable. Among the nine stable schemes, one is found to obtain a spectral radius of one when the normalized step ratio is less than 5.477, indicating no numerical dissipation or numerical divergence. Compared with integration schemes from previous studies, this integration scheme demonstrates better performance in calculation accuracy and energy conservation. A two-stage approach, namely the static stage and the dynamic stage, has been employed in the simulation of the acoustoelastic effect. The former stage is adopted to obtain the initial stress and the latter stage, where the proposed integration scheme is implemented, is adopted to simulate the ultrasound propagation in an initial stress state. The simulation results of the dynamic stage show that the ultrasound velocity increases in a compression stress state and decreases in a tension stress state for aluminum alloy, which is in good agreement with previous experimental studies. Together with the simulation result of the static stage, it is conjectured that the acoustoelastic effect results from the stress-dependent elastic modulus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call