Abstract

Acoustoelasticity, a characteristic of material anharmonicity, gives rise to a link between wave propagation velocity and the stress state in materials. Ultrasonic techniques to monitor this coupling, particularly with high sensitivity and in a noncontact manner, can have widespread application both in the quantification of applied and residual stress and in the characterization of nonlinear material behavior through measurement of higher order elastic constants. Here, we use a laser ultrasonic technique to excite and detect zero group velocity (ZGV) Lamb wave resonances in aluminum plates under uniaxial loading. A laser line source is used to excite these resonances at different orientations with respect to the applied load and the signals are detected using an interferometer. The effects of stress and source orientation on ZGV resonance frequencies are validated using the theory of acoustoelastic Lamb wave propagation. In addition, a model-based inversion technique is used to extract Murnaghan’s third-order elastic constants from measurements of the stress dependence of the first two ZGV modes generated parallel and perpendicular to the applied load. Laser generation and detection of ZGV resonances is shown to be an effective and powerful approach for the noncontact and nondestructive acoustoelastic characterization of elastic waveguides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.