Abstract

As an alternative to microphones, optical techniques have been studied for measuring a sound field. They enable contactless and non-invasive acoustical observation by detecting density variation of medium caused by sound. Although they have important advantages comparing to microphones, they also have some disadvantages. Since sound affects light at every points on the optical path, the optical methods observe an acoustical quantity as spatial integration. Therefore, point-wise information of a sound field cannot be obtained directly. Ordinarily, the computed tomography (CT) method has been applied for reconstructing a sound field from optically measured data. However, the observation process of the optical methods have not been considered explicitly, which limits the accuracy of the reconstruction. In this paper, a physical-model-based sound field reconstruction method is proposed. It explicitly formulates the physical observation process so that a model mismatch of the conventional methods is eliminated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.