Abstract

A Stark effect for excitons parametrically driven by coherent acoustic phonons is proposed. Our scheme refers to a low-temperature intrinsic semiconductor or semiconductor nanostructure pumped by an acoustic wave (frequency band nu(ac) approximately equal to 1-40 GHz and intensity range I(ac) approximately equal to 10(-2)-10(2) W/cm(2)) and probed by low-intensity light. Tunable optical band gaps, which strongly change the spectral shape of the exciton line, are induced in the polariton spectrum by acoustic pumping. We develop an exactly solvable model of the acoustic Stark effect and apply our results to GaAs driven by bulk or surface acoustic waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.