Abstract

Membrane separation is widely used in food, pharmaceutical and water treatment industries but suffers a longstanding challenge of fouling. In this article, acoustically excited microstructures are demonstrated as a new mechanism to mitigate membrane fouling and remove cake layer aggregations formed on a microfluidic membrane-on-chip device. With acoustic streaming induced by oscillating microstructures near the membrane surface, cake layer fouling was effectively broken up and removed on the acoustofluidic membrane separation device within 100 milliseconds. The device is simple to fabricate and offers direct observation of crossflow microfiltration across the device membrane, giving valuable insight to particle fouling events often unobtainable in traditional membrane device configurations. The device bolsters advantages like label-free and reagent-free particle separation and in situ membrane cleaning during separation, providing a new mechanism for membrane separation applications used across industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call