Abstract

Removing salinity has always been a challenge for wastewater treatment. Utilizing nanofiltration (NF) membranes is a promising approach. However, currently available NF membranes are less effective in monovalent salt removal. In this study, work toward the initial aim of fabricating charge mosaic membranes led to charge-patterned NF-selective films on polyether sulfone (PES) or polyacrylonitrile (PAN) support membranes, with similar rejection for mono- and divalent salts. The membranes were fabricated by a two-step layer assembly of first negatively charged polystyrene sulfonate (PSS) particles immobilized in a polyvinyl alcohol (PVA) layer, followed by coating a positively charged polyethyleneimine (PEI) layer. Both PVA and PEI were crosslinked using glutaraldehyde that had initially been impregnated into the support membrane. The type of support membrane, nanoparticle, PVA, and PEI concentrations during fabrication, as well as feed pH and salt concentration, play significant roles in separation performance of obtained composite membranes. Charge-patterned NF membranes fabricated using 0.5 wt.% PVA and 0.05 wt.% PSS for assembly of the first layer followed by coating 0.5 wt.% PEI solution had even somewhat higher rejection for monovalent salt (NaCl; ∼82%) compared to multivalent salts (Na2SO4, MgSO4, and MgCl2; ∼74%), at a permeance of 5.5 LMH/bar on the PES and 3.1 LMH/bar on the PAN support membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.