Abstract

Abstract An interpretation is made of interannual changes in acoustic travel time between Oahu and seven receivers at distances of 3000–4000 km. Measurements were made in late 1983, and over two 5-month intervals between 1987 and 1989. Previous publications demonstrated that these changes stem from variations in temperature. Two hydrodynamic ocean models are used to identify plausible oceanic features that could cause these variations. They are from the Naval Research Laboratory and the Florida State University at (1/8)° and (1/6)° resolution, respectively, and are forced with different interannual wind sets for more than a decade. Modelled El Nino's and La Nina's generate poleward travelling Kelvin waves on the eastern boundary of the Pacific. These excite Rossby waves that propagate westward at mid-latitudes. Rossby waves are the dominant model features which affect the modelled acoustic travel times, and hence section-averaged temperatures in the eastern North Pacific. These waves yield travel times whose standard deviations and rates of changes are similar to the measurements. In the observations, some sections separated by less than 500 km exhibit trends in heat content with opposite signs. Similar variability can be explained with modelled Rossby waves. Model wavelengths less than 500 km, eddies, and seasonal cycles induced by seasonal winds yield travel times that are two orders of magnitude too small to account for the data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call