Abstract

The alpha finite element method (α-FEM) developed recently has showed outstanding features in solving solid mechanics and acoustic problems. In the α-FEM, a parameter alpha has been introduced to make the best use of “over-stiffness” of the FEM model and “over-softness” of the NS-FEM model to achieve the ultimate performance. Because the parameter alpha varies with the problems and the mesh size, it is difficult to find a general approach to determine, which holds back the application of the α-FEM method. In this paper, acoustic simulation using α-FEM with a general approach for reducing dispersion error is proposed. We first carry out a theoretical analysis of dispersion error, leading to a very important relation between the dispersion error and the parameter alpha. Next, the parameter of alpha is then determined by minimizing the dispersion error. The determined parameter alpha enables a proper gradient smoothing operation in the α-FEM, and provides a perfect balance between the stiffness and mass in the discrete system matrix, which dramatically reduces the dispersion error. The properties of the present α-FEM have been confirmed numerically via examples of 1D, 2D and 3D acoustic problems with various boundary conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.